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Empirical studies in economics are often faced with the problem of violating restrictions dictated by economic
theory. Obtaining estimates that either do not lend easily to economic interpretations, or that are not plausible,
is common to investigations in the past. With inferences involving a: production technology for example,
equalityand inequality restrictions are generallydictated by economic theory on the parametersof either the cost
or the profit function. Generatinga feasible solution has been found to by possible not with the samplingtheory
or classical, but with the Bayesian approach.

This paper demonstrates how Bayesian methodology can be used to accommodate equality and inequality
restrictions on a cost-minimizing problem. Using the translog functional form, the equality restrictions involve
conditions of symmetry and homogeneity in input prices, while the inequality constraints are concerned with
monotonicity and concavity. The equality restrictions were readily handled, but the inequalities posed more of
a problem. Issues like complicated integration and sampling from a truncated distribution have been found to
deter analytical techniques; but with numerical methods, the study shows how obtaining posterior pdfs and
deriving posterior means and standard deviations become easy. To impose equality restrictions, the Gibbs
sampler was used. For the inequality constraints, the Metropolis-Hastings algorithm was found to be practical.
Non-informative priors were used for all estimation. Estimates derived from both the Gibbs sampler and the
Metropolis algorithm were found to be quite close, except for the correspondingstandard deviations.
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1. INTRODUCTION

Estimation of a cost or a profit function using duality generally involves estimation of
flexible functional forms such as the translog, normalized quadratic, generalized Leontief,
and other forms, Unfortunately, these estimated functions frequently violate the regularity
conditions (monotonicity, concavity, or convexity) implied by economic theory. One
approach to this problem involves the imposition of parametric restrictions globally.
However, the global imposition of regularity conditions forces many flexible functional
forms to exhibit properties contrary to economic theory. For example, imposing global
concavity on. a generalised Leontief cost function will rule out complementarity between
inputs (Diewertand Wales, 1987).

This paper makes use of the Bayesian approach, (such as those of Chalfant and Wallace
(1992) and Terrell (1996)), which allows us to draw finite sample inferences concerning
nonlinear functions of parameters. Empirical implementation of the Bayesian approach

1 An earlier versionof this paper was presented during the glh National Convention on Statistics(NCS) at the
Westin Philippine Plaza Hotel,on October 1-2,200 I.

2 Dr. Tan-Cruz is connectedwith the School of Applied Economics, University of Southeastern Philippines,
Obrero Campus, DavaoCity, email address:ttcruz@uscp.edu.ph.Prof.Griffiths and Dr. O'Donnell are
Cruz' supervisorand co-supervisor respectively, of her dissertation done at the University of New England,
and from wherethis article was extracted. Prof. Griffiths is now with the Universityof Melbourne, while Dr.
O'Do'nnell is withQueensland University, all in Australia.
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involves the use of Markov chain Monte Carlo (MCMC) simulation methods. Two of the
algorithms used are the Gibbs sampler (when inequality constraints are not imposed) and the
Metropolis-Hastings algorithm (when inequality constraints are included). Both can be used
to draw samples from a marginal probability density indirectly, without having to derive the
density itself. This methodology is important where posterior marginal densities can be
difficult or impossible to derive analytically.

A system of cost and factor-share equations for the Australian merino wool growing industry
is used to demonstrate how estimation, incorporating both equality and inequality restrictions
can be done numerically via MCMC methods. Aside from the purpose of estimation, the
MCMC algorithms demonstrates alternatives for carrying out Bayesian inference in
seemingly unrelated regression equations with equality and inequality constraints on the
coefficients.

The paper is presented with the following outline: Section 2 presents the empirical model
taking the form of a seemingly unrelated regression (SUR) model, and which translate a
standard economic model of producer behavior into a system of empirical cost and factor
share equations. In Section 3 we describe iterative procedures for obtaining maximum
likelihood estimates of the SUR model parameters. We also describe the Gibbs sampler and
Metropolis-Hastings algorithm, and the manner in which monotonicity and curvature
restrictions can be imposed. In Section 4 the data and the variables used are discussed.
Estimation results like parameter estimates, predicted factor shares, and estimated input-price
elasticities are presented in Section 5. Input-price elasticities are useful for feeding into
studies which examine the welfare implications of policy decisions and technical change.
The paper concludes with Section 6.

2. MODEL

Our model assumes that the technological possibilities faced by the firm can be expressed by
the cost function:

(1) C(w, q) =min {w'x:flx);::: q, x ;:::O}
x

where x is an I x 1 vector of inputs, w is an I x 1 vector of input prices and q is scalar output.
The cost function is assumed nonnegative for all positive prices and output, and linearly
homogenous, nondecreasing (i.e., monotonic), concave and continuous in prices (Chambers,
1988). Also, the Hessian matrix of second-order price derivatives is symmetric. This paper
is concerned with monotonicity and concavity, and the method in which these properties can
be imposed locally on an estimated flexible functional form.

This study made use of the translog functional form of Christensen, Jorgensen and Lau
(1971), assuming a constant returns to scale. Following the work of O'Donnell and
Woodland (1991) we express the cost function as

I I I
(2) In(C/q) = ao + aTT + ,1: ailn(wi) + .5.1: ,1: alj"ln(wi)ln(wJ-)1=1 1=1]=1

where C represents total costs, Wi represents the price of input i, and T is a time trend which

is used to capture the effects of exogenous technical change. The factor share equations are
obtained using Shephard's lemma:
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(3)
I

si =ai + ,L aiiln(wj-)i = I, ...,1
J=I "J

(7)

•

•

where si represents the cost share of input i. F(Om equations (2) and (3) we see that our

assumed form of technical change is Hicks neutral (i.e, factor shares are unaffected by
technical change while unit costs decrease at a constant percentage rate). Some of the
theoretical properties of the cost function (I) can be expressed in terms of the parameters
appearing in equation (2). Specifically, linear homogeneity and symmetry will be satisfied if

I I
(4) .Llai= 1, ,Llaii=O (i= 1, ...,1),

1= J= "J

and aij = aji (i,j = 1, ...,1).

Monotonicity will be satisfied if the estimated factor shares.arepositive, while concavity will
be satisfied if the Hessian matrix of second-order derivatives is negative semi-definite (i.e., if
and only if its eigenvalues are non-positive). 'With Bayesian estimation, the parameter space
where monotonicity and concavity hold is denoted by f2 while the unrestricted parameter

space is denoted by F] ..
Our empirical model is obtained by embedding equations (2) and (3) in a stochastic
framework. Incorporating stochastic terms and introducing the firm and time subscripts n
and t (n = 1, ..., Nand t = 1, ..., 1), our empirical model becomes

I
Sint = ai + .L aiiln(wj'nt) + Eint i = 1, ..., I-I

J=l "J

(5)

where Eint (i = 1, ..., 1) represents statistical noise. One share equation is dropped to avoid

singularity of the error covariance matrix. The share and cost equation errors are assumed to
be independently and identically distributed over firms and time with

(6) E{Eint} = 0
and

{

a im if n = k and t =S

{EintEmks} =
o otherwise.

The stochastic assumptions allow for within-firm contemporaneous correlation between the
disturbances Eint. The cost function combines errors that vary over time and firms with any

time-specific. uncertainty that may exist. Hence the cost function does not have a
complicated error components structure,

3. ESTIMATION

Four methods for estimating the parameters of the model given by equations (4) to (7) are
discussed: two equivalent methods for obtaining maximum likelihood estimates, and two
MCMC algorithms (the Gibbs sampler and the Metropolis-Hastings algorithm). The
maximum likelihood methods do not allow for 'the imposition of monotonicity or concavity
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,
constraints. The Gibbs sampler also does not impose these properties, but the estimates are
used as benchmark by which to judge the maximum likelihood and the Metropolis-Hastings
algorithm estimates. The Metropolis-Hastings algorithm demonstrates how MCMC methods
can be used to ensure that monotonicity and concavity are satisfied.

3.1 Maximum Likelihood Estimation
The system of equations given by (5) can be written:

(8) Yint = xint'rJi + Eint i = I, , 4

where Yint = Sint i = I, , 3

Y4nt = In(Cnt/qnt)

(9) rJi = (aj, aib ..., ai4)' i = I, ..., 3

(10) ~4 = (ao, aT, aI, ..., a4, all, a12, ..., a14, a22, a23, ..., a44)'

and the definitions of the Xint conform to the definitions of the rJi. Notice from equations (9)

and (10) that the rJi vectors have many elements in common. The restrictions given by

equation (4) and the restrictions implicit in equations (9) and (10) together mean that only II
of the 31 parameters in the rJi vectors are 'free'. Those that are redundant can be obtained

from the other parameters and the restrictions.

•Y4

Y3
(II)

If we stack equation (8) by firm, time period and then by equation, we have

YI. XI rJI EI

Y2 X2 rJ2 E2
= +

X3 rJ3

X4 rJ4

where Y! = (Yill, Yi21, ..., YiNI, Yil2, Yi22, ..., YiN2, ... ,YiNT)' is NT x 1 for all i, and Xi and

Ei are similarly defined, although it is worth noting that Xi is NT x 5 for i = I, ..., 3 and X4 is

NT x 16. More compactly, we can write
(12) y= XrJ + E

The parametric restrictions implied by equations (4), (9) and (10) and our assumptions
concerning the error vector Ecan also be written more compactly as:

(13) RrJ=r
(14) E{E} = 0

and

(IS) E{EE'} = n = "i:fi9INT

where L = [cr im] and Rand r are known matrices of order (20 x 31) and (20 x I)

respectively. The model given by equations (12) to (15) is a standard restricted SUR model
(see Judge et al.,1985, pp.469-473).

•
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To obtain maximum likelihood estimates we note that the restricted Generalized Least
Squares (GLS) estimator for ~ is

(16) ~ = B+ CR'(RCR'tl(r-RB)

1\

where C = [X'(~-1®INT)X]-1 and b = CX'(~-1®INT)Y is the unrestricted GLS estimator. In

practice, restricted Estimated Generalized Least Squares (EGLS) estimates can be obtained
by replacing ~ in equation (16) with an estimator, constructed using restricted or unrestricted
OLS residuals. Another estimate of ~ can then be obtained by replacing ~ with a new
estimator based on the restricted EGLS residuals (rather than OLS residuals). We can
continue to update our estimates of ~ in an iterative way and, if the disturbances are
multivariate normal, this iterative process .will yield maximum likelihood estimates.

The iterative process just presented can be time-consuming if the number of restrictions to be
imposed and parameters to be estimated at each step is large. An alternative but equivalent
estimation procedure involves maximum likelihood estimation of the subset of II free
parameters in B. After convergence, the remaining 20 maximum likelihood estimates are
derived using the 20 parametric restrictions R~ = r. To implement the procedure we
rearrange the rows of ~ and the columns of X and R in such a way that equations (12) and
(13) can be written in the following partitioned form:

(17) Y=X~ + E = [XI X2] [~] + E

(18) R~=[RIR2][~]=r

where Xl, XZ' RI' RZ' Yand" are NT x 20, NT x 11,20 x 20,20 x II, II x 1 and 20 x 1

respectively. The vector y contains the subset of 11 free parameters to be estimated in the
first stage, and " contains the 20 remaining parameters in ~ which will be estimated using
estimates ofy and the following equivalent form of equation (18): .

(19) " =R-I
I
(r - R2Y).

The vector Yof free parameters contains parameters which cannot be obtained from other
parameters and the restrictions. To estimate Ywe use (19) to rewrite (17) in the form:

(20) y* =x*Y+ E

where y*= y - XIR-lr and x*= X2 - XIR-l R2. The model given by (20), (14) and (15) is

an unrestricted SUR model, with (unrestricted) GLS estimator for Ygiven by
1\ *x* 1 *(21) t = C '(~- ®INT)y

where C* = [x*'(~-I®INT)x*]-I. In practice, EGLS estimates can be obtained by replacing

~ with an estimator constructed using OLS residuals and if the disturbances are multivariate
normal, a maximum likelihood estimate for y can be obtained using the iterative procedure
described above.
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3.2 Bayesian Estimation
We begin by stating Bayes Theorem:

'* *(22) j{y, ~ Iy ) o: L(y It. L) p(y, L)
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where o: denotes 'proportional to',j{y, L Iy*) IS the posterior joint density function for y and L

given y* (the posterior density summarises all the information about y and L after the sample

y* has been observed), L(y* I y, L) is the likelihood function (summarising all the sample
information), and p(y, L) is the prior density function for y and L (summarising the

nonsample information about y and L). Our interest lies in the posterior density j{y, L Iy*)
and characteristics (eg. means and variances) of marginal densities which can be derived
from it.

The Bayesian treatment of the unrestricted SUR model begins with the assumption that E is
multivariate normal. Under this assumption the likelihood function is (Judge et ai, p.478)

(23) L(y* Iy, L) o: ILI-NT12 exp[-.5 tr(AL-1)]

where A is the 4 x 4 symmetric matrix with (i,})th element aij = (yj -xi y)'(yj -xj y), and yj

and xi are sub-vectors and matrices of y and X. In addition, we use a noninformative joint

pnor:
(24) p(y, L) =p(y) peL) I(yErs) s = 1, 2

where p(y) oc constant, peL) cc ILI-(I+1)/2 is the limiting form of a Wishart density, the r s are

the sets of permissible parameter values when monotonicity and concavity information is
(s =2) and is not (s =1) available. We choose a noninformative prior because it allows us
to better compare our maximum likelihood results with our Bayesian results, whether or not
monotonicity and concavity information is available. The same is true of the joint posterior
density (Judge et ai, p.479) written as:

(25) j{y, L Iy*) cc ILI-(NT+I+I)/2 exp[-.5(y* - x*Y)'(L-1®INT)(y* - x*y)] I(yErs)

s = 1,2

(26) o: ILI-(NT+I+1)/2 exp[-.5 tr(AL- l)] I(YErs)
s = 1,2.

Of interest are the posterior marginal densities of the elements of y, and the means and
standard deviations of these posterior densities. Unfortunately, these results cannot be
obtained from equations (25) and (26) analytically. Instead, we must use MCMC methods to

draw a sample from the posterior joint density j{y I y*). We then use these sample
observations to estimate the moments of the marginal densities of the elements ofy. The two
MCMC algorithms we use to generate these samples are the Gibbs sampler and Metropolis
Hastings algorithm.

..
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The Gibbs sampler was used for Bayesian estimation without monotonicity and concavity
imposed. That is, the parameter space for y was the unrestricted space Tj. The Gibbs

sampler is an algorithm which effectively samples from.f{y Iy*) by iterating as follows:,

Step 1: Specify starting values yO, ~O. Set i = O.

Step 2: Generate y i+l from.f{y I~i, y*)
Step 3: Generate ~i+l from.f{~ Iy i+l, y*)
Step 4: Set i = i+1 and go to Step 2.

This iteration scheme produces a chain, y 1, ~1, Y2, ~2, ..., with the property that, for large

k, y k+1 is effectively a sample point frqm.f{y I y*) (in this case the chain is said to have

'converged'). Thus, in practice, y k+1, ..., Yk+m can be regarded as a sample from.f{y Iy*).

We obtain the kernel of the conditional posterior pdf using equation (25) and viewing
~ as a constant, to get

(27) .f{y I~, y*) oc exp[-.5(y - y)'x*'(~-IQ!)[NT)x*(Y - y)] [(yerl)

Terrell did a modification in imposing constraints over a specified grid of prices: for each

parameter vector generated by the Gibbs sampler (ie. for each y k), monotonicity and
concavity constraints are evaluated at each price point in the grid. The parameter vector is
included in the sample if the constraints hold and rejected otherwise-. This modification has
the effect of changing the conditional density in equation (27) to a: truncated multivariate
normal density that is only positive in the region r2. It is often ,necessary to generate

extremely large numbers of parameter vectors 'before obtaining just one vector that can be
included in the sample; hence the Metropolis-Hastings algorithm which does not suffer this
disadvantage, was used to impose the inequality 'constraints due to monotonicity and
concavity.

The Metropolis-Hastings Algorithm

A Metropolis-Hastings 'algorithm which allows us to impose monotonicity and concavity at a
particular set of prices is outlined as follows:

Step 1: Specify an arbitrary starting value y 0 which satisfies the constraints. Set i =O.

Step 2: Given the current value y i, use a symmetric transition density q(y i. YC) to generate a

candidate for the next value in the sequence, y c.

Step-S: Use the candidate value y C to evaluate the monotonicity and concavity constraints at

the specified prices. If any constraints are violated set a(y i, y C) :i= 0 and go to Step 5.

Step 4: Calculate aCyl, y C) = min(g(y C)/g(y i», 1) where g(y) is the kernel of.f{yIy*).
Step 5: Generate an independent uniform random variable U from the interval [0, 1].

{

y C if U < a(y i, y C)

Step 6: Set y i+l =, .

Y l if U ~ a(y ', YC)
Step 7: Set i = i+1 and go to Step 2.
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Again, this iteration scheme produces a chain, y 1, Y2, ..., with the property that, for large

k, y k+1 is effectively a sample point fromj(y Iy*). Thus, the sequence y k+1, ..., Yk+m can

once again be regarded as a sample from j(y I y*). Further, this sequence satisfies
monotonicity and concavity at the specified prices. Notice from Steps I, 2 and 4 that in order

to make the Metropolis-Hastings algorithm operational we need an arbitrary starting value yO
which satisfies the constraints. For starting values we used Ui = 0.25 (i = 1, ..., 4) and uij = 0

for all i -:/:. j. All other parameters were set equal to their maximum likelihood estimates.
These starting values satisfy monotonicity and concavity but may be some distance from the

mean of j(y I y*) , and hence a reasonably long bum-in period is needed to ensure the

convergence of the MCMC chain). The transition density q(y i, YC) is assumed to be
/\

multivariate normal with mean y i and covariance matrix [x*'(~-l®lNT)x*]-l (the
/\

estimated covariance matrix of the restricted SUR estimator y). The kernel g(y) of the

marginal density j(y Iy*) can be obtained by integrating ~ out of the joint posterior (26) (see
Judge et al, p.479):

(28) (y Iy*) ex: IAI-NTI2 I(yEf2) =g(y).

4. DATA AND VARIABLES

The data were originally collected by the Australian Bureau of Agricultural Economics
(ABARE) as part of its Australian Sheep Industry Surveys (ASIS). Our sample consists of
310 time-series and cross-section observations on Australian merino woolgrowers, covering
the periods 1952-53 to 1962-63 and 1964-65 to 1975-76, gathered by the Australian Bureau
of Agricultural' Economics (ABARE). Each observation in the original data set is a record of
the average 'financial and physical characteristics of a group of firms. These observations
were used to construct observations on output (q), total cost (C), input prices (w) and input
quantities. Inputs were grouped into one of four broad categories: land, capital, livestock and
other inputs (including labour, equipment, materials and services).

5. RESULTS

The results were generated using the econometric package SHAZAM.

Parameter Estimates
Maximum likelihood estimates of the structural parameters J3 are' presented in Table 1, along
with the means of the Bayesian samples obtained with and without the inequality constraints
imposed, using the Gibbs sampler and the Metropolis-Hastings algorithm respectively. Note
that all coefficients are statistically different from zero at usual levels of significance. The
strong similarity between the maximum likelihood and Gibbs estimates presented in Table 1
reflects our use of a noninformative prior. The standard deviations of the Gibbs samples are
slightly higher than the estimated standard errors of the maximum likelihood estimates, and
this is expected since unlike the standard deviations of the Gibbs samples, the estimated
standard errors of the maximum likelihood estimates do not account for the uncertainty
associated with the estimation of the variance-covariance matrix E. For this reason, and
because the maximum likelihood and Gibbs estimates are very similar, the maximum

-.
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likelihood estimates are not considered henceforth. Finally, there is a reasonable similarity
between the Gibbs and Metropolis-Hastings estimates presented in Table 1.

Predicted Factor Shares
Monotonicity requires that the predicted cost shares be positive. The distributions of the
predicted factor shares were uniformly found to lie between zero and one, indicating that
monotonicity was satisfied without the imposition of constraints.

Elasticities
Table 2 reports the means and standard deviations of the estimated pdfs of input price
elasticities calculated at the quantity-weighted average of all input prices in the sample. The
means of all own-price elasticities are correctly signed indicating that all input demands are
inelastic with respect to their own prices. Moreover, the only own-price elasticity affected by
the imposition of the constraints is the own-price elasticity for livestock. Another
observation is that the standard deviations of the constrained and unconstrained probability
density functions are generally similar, except the standard deviation of the own-price
elasticity for livestock. Finally, the two cross-price elasticities which measure the
relationships between the prices and quantities of livestock and other inputs undergo a sign
reversal with the imposition of the constraints. Thus, livestock and other inputs appear to be
substitutes in production. It is also interesting to note that the imposition of concavity
changed the coefficient estimates very little despite the fact that the unconstrained estimates
led to concavity violations at several price vectors. Furthermore, small differences in the
coefficient estimates have led to much greater differences in a few of the elasticities.
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Table 1: Parameter Estimates

MLa Gibbsb Metropolis-Hastinqs'
(no inequality (inequality constraints
constraints) imposed)

Constant -0.595 -0.597 -0.840
(0.058) (0.062) (0.050)

al Land 0.250 0.250 0.251 •(0.005) (0.006) (0.006)

a2 Capital 0.674 0.674 0.664

(0.019) (0.020) (0.017)

a3 Livestock 0.440 0.440 0.344

(0.013) (0.013) (0.008)

all Land/Land 0.023 0.023 0.023

(0.001 ) (0.001 ) (0.001 )

al2 Land/Capital 0.018 0.018 0.018

(0.001 ) (0.001) (0.001 )

•a13 Land/Livestock -0.006 -0.006 -0.006

(0.001 ) (0.001 ) (0.001 )

a22 Capital/Capital 0.115 0.115 0.110

(0.006) (0.006) (0.006)

a23 Capital/livestock -0.007 -0.007 -0.006

(0.002) (0.003) (0.002)

a33 Livestock/Livestock 0.076 0.076 0.057

(0.002) (0.002) (0.001 )

aT Time -0.032 -0.032 -0.033 •(0.002) (0.003) (0.002)

a Numbers in parentheses are estimated standard errors.

b Numbers in parentheses are standard deviations of the MCMC samples.

•
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TABLE 2 Estimated Input-Price Elasticities Evaluated at Average Pricesa

Price of Price of Price of Price of
Land Capital Livestock Other Inputs

Gibbs (unconstrained)

Qty of Land -0.647 0.493 0.027 0.127
(0.011 ) (0.010) (0.007) (0.018)

• Qty of Capital 0.148 -0.314 0.072 0.094
(0.003) (0.022) (0.009) (0.022)

Qty of Livestock 0.025 0.218 -0.126 . -0.117
(0.007) (0.027) (0.024) (0.034)

Qty of Other Inputs 0.022 0.053 -0.022 -0.053
(0.003) (0.012) (0.006) (0.015)

Metropolis-Hastings (constrained)

Qty of Land -0.643 0.496 0.030 0.118
(0.011) (0.011 ) (0.008) (0.018)

Qty of Capital 0.148 -0.333 0.077 0.108... (0.003) (0.021 ) (0.008) (0.020)

Qty of Livestock 0.027 0.229 -0.326 0.070
(0.007) (0.023) (0.005) (0.023)

Qty of Other Inputs 0.020 0.061 0.013 -0.094
(0.003) (0.011 ) (0.004) (0.012)

a Numbers in parentheses are standard deviations of the MCMC samples.
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6. CONCLUSION

•

This paper uses Bayesian methods to impose regularity conditions on a system of cost and
factor share equations. The Bayesian methodology represents an alternative to conventional
sampling theory techniques which can impose regularity, but typically destroy the flexibility
properties of many of the more popular functional forms. For problems with a large number
of inequality constraints, the Metropolis-Hastings algorithm is an MCMC technique with
much greater practical usefulness. The study offers a number of opportunities for further
research. The most interesting of these involves the specification of a more complex error
structure. Other extensions include the use of alternative functional forms and relaxation of
the assumption of constant returns to scale, and application of the methodology to the
Philippine data.
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